Adaptive Kalman Filtering Methods for Low-Cost GPS/INS Localization for Autonomous Vehicles

نویسندگان

  • Adam Werries
  • John M. Dolan
چکیده

For autonomous vehicles, navigation systems must be accurate enough to provide lane-level localization. Highaccuracy sensors are available but not cost-effective for production use. Although prone to significant error in poor circumstances, even low-cost GPS systems are able to correct Inertial Navigation Systems (INS) to limit the effects of dead reckoning error over short periods between sufficiently accurate GPS updates. Kalman filters (KF) are a standard approach for GPS/INS integration, but require careful tuning in order to achieve quality results. This creates a motivation for a KF which is able to adapt to different sensors and circumstances on its own. Typically for adaptive filters, either the process (Q) or measurement (R) noise covariance matrix is adapted, and the other is fixed to values estimated a priori. We show that by adapting Q based on the state-correction sequence and R based on GPS receiver-reported standard deviation, our filter reduces GPS root-mean-squared error by 23% in comparison to raw GPS, with 15% from only adapting R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low cost automation using INS/GPS data fusion for accurate positioning

Low cost automation often requires accurate positioning. This happens whenever a vehicle or robotic manipulator is used to move materials, parts or minerals on the factory floor or outdoors. In last few years, such vehicles and devices are mostly autonomous. This paper presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse positio...

متن کامل

Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion

This paper is an attempt to generalize the results obtained earlier and presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse position signals from the Global Positioning System (GPS) and Inertial Navigation System (INS) for the autonomous mobile vehicles. The presented method has been validated in 3-D environment and is of parti...

متن کامل

Sensor Fusion Based on Fuzzy Kalman Filtering for Autonomous Robot Vehicle

This paper presents the m e w of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse position signals from the Global Positioning System (GPS) and Inertial Navigation System (INS) for the autonomous mobile vehicles. The presented method has been validated in 3-0 environment and is of particular importance for guidance, navigation, and control of flyi...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

On the Optimization of State Observers for Applica- Tion in Navigation of Low Cost Autonomous Vehicles

Marine Autonomous Vehicles, either Surface (ASV) or Underwater (AUV) are becoming the kingpin for ocean research and sea exploration. Long term and high persistence are highly desirable characteristics for adding to these autonomous platforms. The possibility of performing adequate tasks by using low cost underwater vehicles could multiply the number of agents in the area and therefore, providi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016